Code your First Game

Timothy Clark

Adapted from code-your-first-game.com

tdhc.uk/pong

Chapter 1: The Basics

Step 1. First Code File

Extract from “Creating a Website"

The Internet, The Web and HTML

e The Internet is the global “network of networks” that use Internet protocol
(IP) to link billions of devices worldwide.

e The World Wide Web is an information space where web resources are
identified by URLs, interlinked by hypertext links, and are accessed via the
Internet

e A web site is an online location that maintains one or more web pages.

e A web page is an individual page, either online or offline.

e Hyper Text Markup Language is a translatative language used to create
content in a web page.

e The World Wide Web Consortium (W3C) is an organisation founded by Tim
Berners-Lee, as an international standardisation organisation for the Web.

b

First Code File

Create the file

Declare the DOCTYPE and
Charset

Write some HTML (5')
Add the <script> tags
Write some JavaScript!

<IDOCTYPE html> ooy
< >
< charset="UTF-8" />
< >My Gamel</ >
4 >

First Code File

Create the file

Declare the DOCTYPE and
Charset

Write some HTML (5!)
Add the <script> tags

Write some JavaScript!
Now create the canvas, 800

< / h ead > | pixels x 600 pixels

< >
< >Hello World!</ >
<p>This Is a paragraph</p>

</ >

< >
< >
console.log(“Hello World!");

window.alert ("Hello World!");
94 >
94 >

e File

SEES ‘)’
NG :
)) A =

Create the file

Declare the DOCTYPE and
Charset

Write some HTML (5!)

Add the <script> tags
Write some JavaScript!
Now create the canvas, 800
pixels x 600 pixels

B
First Code File

Create the file
Declare the DOCTYPE and

Charset
< . Write some HTML (5!)
. Add the <script> tags

Write some JavaScript!

Now create the canvas, 800

id="gameCanvas" [

width="800"

height="600">
94 >

<script>

Chapter 1: The Basics

Step 2: Drawing and Position

</

>
canvas:
canvasContext;
>

- 21
Drawing and Positio

Declare "canvas" and "canvasContext"
Using "canvas",
document.getElementByld("canvasID")
Get the canvasContext with
"canvas.getContext('2d")"

Create the window.onload

Try out canvasContext.fillStyle then
fillRect

fillStyle looks for colour values

fillRect needs more values (X
Coordinate,Y Coordinate, Width,Height)
Draw 3 rectangles

S s,
\ f ~ i = '1“' [

Drawing and Position

Declare "canvas" and "canvasContext"
Using "canvas",
document.getElementByld("canvasID")
Get the canvasContext with
"canvas.getContext('2d")"

Create the window.onload

Try out canvasContext.fillStyle then
fillRect

fillStyle looks for colour values

fillRect needs more values (X
Coordinate,Y Coordinate, Width,Height)
Draw 3 rectangles

canvas = document.getElementByld(‘gameCanvas');

Declare "canvas" and "canvasContext"
Using "canvas",
document.getElementByld("canvasID")
Get the canvasContext with
"canvas.getContext('2d')"

Create the window.onload

Try out canvasContext.fillStyle then
fillRect

fillStyle looks for colour values

fillRect needs more values (X
Coordinate,Y Coordinate, Width,Height)
Draw 3 rectangles

canvas = document.getElementByld(‘gameCanvas');
canvasContext = .getContext('2d");

v
Drawing and Position

Declare "canvas" and "canvasContext"
Using "canvas",
document.getElementByld("canvasID")
Get the canvasContext with
"canvas.getContext('2d')"

Create the window.onload

Try out canvasContext.fillStyle then
fillRect

fillStyle looks for colour values

Canvas - document.getElementB fillRect needs more values (X

Coordinate,Y Coordinate, Width,Height)

Canvascontext — canvaslgetCont . Draw 3rectangles

window.onload = ()1

Drawing and Position

Declare "canvas" and "canvasContext"
Using "canvas",
document.getElementByld("canvasID")
Get the canvasContext with
"canvas.getContext('2d')"

Create the window.onload

Try out canvasContext.fillStyle then
fillRect

fillStyle looks for colour values

fillRect needs more values (X
Coordinate,Y Coordinate, Width,Height)

window.onload = function () { R
= ‘white’:

ﬁllRect (100,50, 250,300);

Chapter 1: The Basics

Step 3: Movement and Time

window.onload = function () {

= 'whitée

_

Movement and Timé

Draw the Ball

Package all the draw code into a function,
drawAll

In window.onload, use setInterval to call
drawAll at millisecond intervals

Declare avariable, ballX

Log its value each time drawAll is called
Increase its value each time drawAll is
called - it now moves!

ﬁllRect (100,100, 50,50);

: N

Movement and Time"

Draw the Ball
Package all the draw code into a function,
drawAll

. In window.onload, use setInterval to call

. " drawAll at millisecond intervals
window.onload = function () { . Declre avariabl,balX

. Log its value each time drawAll is called
Increase its value each time drawAll is
called - it now moves!

drawAll () {
= 'white’:

ﬁllRect (100,100, 50,50):

N LFe

Movement and Time

Draw the Ball

Package all the draw code into a function,
drawAll

In window.onload, use setInterval to call
drawAll at millisecond intervals

Declare avariable, ballX

Log its value each time drawAll is called
Increase its value each time drawAll is
called - it now moves!

window.onload = function () {
setinterval(drawAll, 100):

<

Movement and Timé

Draw the Ball

Package all the draw code into a function,
drawAll

In window.onload, use setInterval to call
drawAll at millisecond intervals

Declare a variable, ballX

Log its value each time drawAll is called
Increase its value each time drawAll is
called - it now moves!

ballX = 100;

Movement and Tlme‘

Draw the Ball

Package all the draw code into a function,
drawAll

In window.onload, use setInterval to call
drawAll at millisecond intervals

Declare a variable, ballX

Log its value each time drawAll is called
Increase its value each time drawAll is
called - it now moves!

function drawAll () {
= '#000"
ﬁllRect (0,0, width, .height);
= ‘white’;
ﬁllRect (100,100, 50,50);

console.log (ballX);
ballX = ballX + 10;

Two ways to increment variables

ballX = ballX + 10;
ballX += 10:

Chapter 1: The Basics

Step 4. Cleaning Up

.
EAG

Cleaning Up

Move the animation code to a

functlon drawAll () { new, separate function,

moveAll

= ‘blac k’; . Declare anew variable for

Frames Per Second, to be

.ﬁllReCt (0,0, .W|dth, used by setInterval

Within setlnterval, call an

: - ‘White'; ' inline function which calls
.ﬁllReCt (0’210' 10,10); | both moveAll and drawAll

Set the interval to 1 second
| I. HYH
- red : (1000) divided by the FPS

fillRect (ballX,100, 10,10);

}
function moveAll () {

console.log (ballX);
ballX += 10:;

window.onload = function () {

FPS = 30;

setinterval(drawALll, 100):

1.

Cleaning Up

Move the animation code to a
new, separate function,
moveAll

Declare a new variable for
Frames Per Second, to be
used by setInterval

Within setlnterval, call an
inline function which calls
both moveAll and drawAll
Set the interval to 1 second
(1000) divided by the FPS

setinterval (function () {
moveAll ();
drawAll ():

} ,100);

1.

e F
Cleaning Up

#

Move the animation code to a
new, separate function,
moveAll

Declare a new variable for
Frames Per Second, to be
used by setInterval

Within setInterval, call an
inline function which calls
both moveAll and drawAll
Set the interval to 1 second
(1000) divided by the FPS

Cleaning Up

1. Move the animation code to a
new, separate function,
moveAll
Declare a new variable for
Frames Per Second, to be
used by setInterval
Within setInterval, call an
inline function which calls
both moveAll and drawAll

setinterval (function () { R e
moveAll ();
drawAllL ():

1 ,1000/FPS);

Chapter 2: Core Gameplay

Step 1. Bouncing the Ball

<script>
var canvas;
var canvasContext;
ballSpeedX = 5;

Declare a new variable, ballSpeedX
to be used to move the ball

To change the ball direction, make
the value negative

If ballX is greater than the canvas

width, reverse its direction

Try to do this without hard coding!
Now try to apply this logic to the
opposite side of the canvas

Create some functions to draw the
rectangles, accepting position,
dimensions and colour

Remember to comment up!

Declare a new variable, ballSpeedX
to be used to move the ball
To change the ball direction, make
the value negative
If ballX is greater than the canvas
width, reverse its direction
- . Trytodo this without hard coding!
. Now try to apply this logic to the
< S c r I p t > opposite side of the canvas

Create some functions to draw the

rectangles, accepting position,

var canvas,; e
var canvasContext;
ballSpeedX = -5;

b3
L _\('
N

Bouncing the Ball

Declare a new variable, ballSpeedX
to be used to move the ball

To change the ball direction, make
the value negative

If ballX is greater than the canvas
width, reverse its direction

Try to do this without hard coding!
Now try to apply this logic to the
opposite side of the canvas

Create some functions to draw the
rectangles, accepting position,

if (ballX > 800) { ot
ballSpeedX = -ballSpeedX;

b3
L _\('
N

Bouncing the Ball

Declare a new variable, ballSpeedX
to be used to move the ball

To change the ball direction, make
the value negative

If ballX is greater than the canvas
width, reverse its direction

Try to do this without hard coding!
Now try to apply this logic to the
opposite side of the canvas

Create some functions to draw the
rectangles, accepting position,

if (ballX > canvas.width) { et
ballSpeedX = -ballSpeedX;

b3
L _\('
N

Bouncing the Ball

Declare a new variable, ballSpeedX
to be used to move the ball

To change the ball direction, make
the value negative

If ballX is greater than the canvas
width, reverse its direction

Try to do this without hard coding!
Now try to apply this logic to the
opposite side of the canvas

Create some functions to draw the
rectangles, accepting position,

if (ballX < 0){ e
ballSpeedX = -ballSpeedX;

Bouncing the Ball

Declare a new variable, ballSpeedX
to be used to move the ball

To change the ball direction, make
the value negative

If ballX is greater than the canvas
width, reverse its direction

Try to do this without hard coding!
Now try to apply this logic to the
opposite side of the canvas

Create some functions to draw the
rectangles, accepting position,
dimensions and colour

function (colour, X, Y, width, height) { [k

= colour;
ﬁllRect (X,Y, width,height);

b3
U _\('
N

Bouncing the Ball

Declare a new variable, ballSpeedX
to be used to move the ball

To change the ball direction, make
the value negative

If ballX is greater than the canvas

// Com ments are COO[! width, reverse its direction

Try to do this without hard coding!
Now try to apply this logic to the

/* opposite side of the canvas
. Create some functions to draw the
rectangles, accepting position,
- dimensions and colour
u I p e . Remember to comment up!
L
[oYo}

"/

Chapter 2: Core Gameplay

Step 2. Circle Draw Detalls

Circle Draw Details

Replace the ball draw code with
asingle fillStyle

Use canvasContext.beginPath()
to define a shape tofill in

Use canvasContext.arc(ballX,
100, 10, 0, Math.P1*2, true)

Use canvasContext.fill()

Have a play with the .arc to see
what the values represent

canvasContext.fillStyle = "white";
canvasContext.beginPath();
canvasContext.arc(ballX, 100, ballWidth/2, 0, Math.PI*2, true);
canvasContext.fill();

Circle showing its radius, r ~ Radius laid along edge, 1 radian

TN

LN

n rad

3.14159... (pi) radians is 180° So 2*pi is one full spin, or 360°

Chapter 2: Core Gameplay

Step 3: Ball 2D Motion, Paddle

\ _
— T
Ball 2D Motion, Paddle

Create two new variables for the Y speed
and position
Under moveAll, set up ballY(You need to do 3
things)
Replace the hard coding in the drawAll
function
Declare a new variable, paddlelY for the
position of the left paddle
Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
calculateMousePos

— B . We'lladdEventListener to call the function

Va r a — 1 o O , when the mouse moves

Now update the paddle's draw code

Finally, we adjust the mousePos code to

var ballSpeedY - 5; IS

\\- ﬂ/ N N

Ball 2D Motion, Paddle

Create two new variables for the Y speed
and position

Under moveAll, set up ballY(You need to do 3
things)

Replace the hard coding in the drawAll
function

Declare a new variable, paddlelY for the

' ition of the left padd
ballY += ballSpeedY; . rLJ)OeSclltaK:Q: ntevscir:szznt,E’ADDLE_HEIGHT

Underneath, we'll set up a new function,

calculateMousePos

if (ba'_lY >= Canvas,height) { . ysél;iﬁ:i/izzti:(e)\r:ztocaIIthefunction
ballSpeedyY = -ballSpeedY: Pl we austthe mosapos code
} else if (ba'.lY <= O) { place the cursor in the centre
ballSpeedY = -ballSpeedY;
L

\
Y
ARG
Ball 2D Motion, Paddle

Create two new variables for the Y speed
and position

Under moveAll, set up ballY(You need to do 3
things)

Replace the hard coding in the drawAll
function

Declare a new variable, paddlelY for the

position of the left paddle

Var ballWidth = 50' . Declare a new constant, PADDLE_HEIGHT

Underneath, we'll set up a new function,
calculateMousePos
We'll addEventListener to call the function

ConSt PADDLE-THICKN ESS = 10; . \I/\lvg\?vnutgjar:eo:::rr)gz\(ljelzsdrawcode
const PADDLE_HEIGHT = 100; et

var paddle1Y = 250;

A

Ball 2D Motion, Paddle

Create two new variables for the Y speed

function calculateMousePos(evt) { and position
. . . Under moveAll, set up ballY(You need to do 3
var rect = canvas.getBoundingClientRect(); things)
var root = document.documentElement; : fRep'acethe hard coding in the drawAll
0 ti
var mouseX = evt.clientX - rect.left - root.scrollLeft; Declare s newvariable. paddlety for the
var mouseY = evt.clientY - rect.top - root.scrollTop; position of the left paddle
return { . Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
X: mouseX, calculateMousePos
. . We'll addEventListener to call the function

y.mouseY when the mouse moves

} . Now update the paddle's draw code
} . Finally, we adjust the mousePos code to

place the cursor in the centre

canvas.addEventListener('mousemove’, function (evt) {
var mousePos = calculateMousePos(evt);
paddle1Y = mousePos.y;

b;

\ 3

5 .
A

Ball 2D Motion, Paddle

Create two new variables for the Y speed
and position

Under moveAll, set up ballY(You need to do 3
things)

Replace the hard coding in the drawAll
function

Declare a new variable, paddlelY for the

position of the left paddle

COlorReCt (. Declare a new constant, PADDLE_HEIGHT

Underneath, we'll set up a new function,

Hwhite"’ | calculateMousePos

We'll addEventListener to call the function
o when the mouse moves
’ Now update the paddle's draw code

paddle1Y, i e oot
PADDLE_THICKNESS,
PADDLE_HEIGHT);

\
= == :
AN
Ball 2D Motion, Paddle

Create two new variables for the Y speed
and position

Under moveAll, set up ballY(You need to do 3
things)

Replace the hard coding in the drawAll
function

Declare a new variable, paddlelY for the
position of the left paddle

Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
calculateMousePos

canvas.addEventListener('mousemove’, function (evt) { : yfe'r'ftﬂ‘iajzz:ﬁ:i tocallthe function
var mousePos = calculateMousePos(evt); . Now update the paddle's draw code

paddlelY = mousePOS.y - (PADDLE_HE'GHT/Z), . Finally, we adjust the mousePos code to

place the cursor in the centre

b;

Chapter 2: Core Gameplay

Step 4. Ball Reset and Collision

paddlelY

PADDLE HEIGHT

paddlelY+PADDLE HEIGHT

function ballReset () {

ballX
ballY

canvas.width/2;
canvas.height/2;

| £ 4\

: !
Ball Reset and Collisio

1.

Create a ballReset function, to place the ball in
the centre

Under moveAll, comment out the code that
flips the ball if it goes below O

Call ballReset there

Move the commented out line into the
ballReset function

Under moveAll, we need to add an if to deflect
the ball if it hits the paddle, else ballReset
Test your code! Remember to check the edges
Now create the variables for a second paddle
In the draw code, duplicate the first paddle's
code, and adjust for new variables and the
paddle 2 position

Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

Back at the addEventListener, change it to
paddle2Y for testing

Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

function ballReset () {
ballX = canvas.width/2;
ballY = canvas.height/2;

ballSpeedX = -ballSpeedX;

ballReset():

1.

VA4 N\ N
Ball Reset and Collision

Create a ballReset function, to place the ball in
the centre

Under moveAll, comment out the code that
flips the ball if it goes below O

Call ballReset there

Move the commented out line into the
ballReset function

Under moveAll, we need to add an if to deflect
the ball if it hits the paddle, else ballReset
Test your code! Remember to check the edges
Now create the variables for a second paddle
In the draw code, duplicate the first paddle's
code, and adjust for new variables and the
paddle 2 position

Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

Back at the addEventListener, change it to
paddle2Y for testing

Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

if (ballY < 0) {
ballSpeedY = -ballSpeedY;

if (ballX < 0) {
if (ballY > paddle1Y &&
ballY < paddle1Y+PADDLE_HEIGHT) {
ballSpeedX = -ballSpeedX;
l else{
ballReset();

S N\ '
Ball Reset and Collision

1.

A4

Create a ballReset function, to place the ball in
the centre

Under moveAll, comment out the code that
flips the ball if it goes below O

Call ballReset there

Move the commented out line into the
ballReset function

Under moveAll, we need to add an if to deflect
the ball if it hits the paddle, else ballReset
Test your code! Remember to check the edges
Now create the variables for a second paddle
In the draw code, duplicate the first paddle's
code, and adjust for new variables and the
paddle 2 position

Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

Back at the addEventListener, change it to
paddle2Y for testing

Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

var paddle2Y = 250;

44

‘ N DN
Ball Reset and Collision

1.

Create a ballReset function, to place the ball in
the centre

Under moveAll, comment out the code that
flips the ball if it goes below O

Call ballReset there

Move the commented out line into the
ballReset function

Under moveAll, we need to add an if to deflect
the ball if it hits the paddle, else ballReset
Test your code! Remember to check the edges
Now create the variables for a second paddle
In the draw code, duplicate the first paddle's
code, and adjust for new variables and the
paddle 2 position

Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

Back at the addEventListener, change it to
paddle2Y for testing

Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

const PADDLE_THICKNESS = 10;

drawRect ("white",
canvas.width-PADDLE_THICKNESS,paddle2Y,
PADDLE_THICKNESS, PADDLE_HEIGHT);

1.

Ball Reset and Collision

Create a ballReset function, to place the ball in
the centre

Under moveAll, comment out the code that
flips the ball if it goes below O

Call ballReset there

Move the commented out line into the
ballReset function

Under moveAll, we need to add an if to deflect
the ball if it hits the paddle, else ballReset
Test your code! Remember to check the edges
Now create the variables for a second paddle
In the draw code, duplicate the first paddle's
code, and adjust for new variables and the
paddle 2 position

Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

Back at the addEventListener, change it to
paddle2Y for testing

Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

S FRN
Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre
Under moveAll, comment out the code that
flips the ball if it goes below O
Call ballReset there
Move the commented out line into the
ballReset function
Under moveAll, we need to add an if to deflect
the ball if it hits the paddle, else ballReset
Test your code! Remember to check the edges
Now create the variables for a second paddle

canvas.addEventListener('mousemove’, function (evt) In the draw code, duplicate the first paddie's

var mousePos = CalCUlateMousePOS(th); . code, and adjust for new variables and the
- . paddle 2 position
paddlezv - mousePOS'y - (PADDLE'HEIGHT/Z)’ . Try to avoid hard coding, you'll need a new
])! constant, PADDLE_THICKNESS!

Back at the addEventListener, change it to
paddle2Y for testing

Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre
Under moveAll, comment out the code that
flips the ball if it goes below O
Call ballReset there
Move the commented out line into the
ballReset function
Under moveAll, we need to add an if to deflect

|f (ballx > CanvaS.Width) [. the ball if it hits the paddle, else ballReset
. . Testyour code! Remember to check the edges
|f (bal.l.Y > paddleZY && . Now create the variables for a second paddle
. In the draw code, duplicate the first paddle's
bau'Y < paddlezv+ PADDLE- H EIGHT) { code, and adjust for new variables and the
ballS eedX = -balls eedX' paddle 2 position
p p ' . Try to avoid hard coding, you'll need a new
lelse constant, PADDLE_THICKNESS!
ballReset()- . Back at the addEventListener, change it to
! paddle2Y for testing
} . Under moveAll, copy the if(ballX < 0), and

} alter it to create if(ballX > canvas.width) for
paddle 2

Chapter 2: Core Gameplay

Step 5. Paddle Al and Scoring

35 pixels above center

paddle2¥Center

35 pixels below center

Ignore chasing
the ball while
it’s within 35
pixels above or
below the paddle
center position
(70 pixel span)

v A\ TN
Paddle Al and Scoring

Create a new computerMovement function, called

under moveAll

If paddle2Y is above the ball, move it down a little,

else, move it up

Test the right paddle's movement, what two things

do you spot?
ComputerMovement (); . Make a new variable for the paddle's centre, and

adjust the if below

If the ball is 35 pixels above or below the centre,

then move the paddle - this fixes the shaking motion

funCtion ComPUterMovement () { . Use 'canvasContext.fillText' to add some text (under
if (paddleZY < ballY) { | the existing draw code)

Declare a 'player1Score' and a 'player2Score'

paddlezv += 6; variable, both starting at O

If it gets past player 1, player 2 should score a point

} else if (paddle2YCentre > ballY) { and vice versa

Replace the text with code to display player1Score

paddlezv -= 6; . and player2Score

A4\ 5
Paddle Al and Scoring

Create a new computerMovement function, called
under moveAll

If paddle2Y is above the ball, move it down a little,
else, move it up
Var paddleZYCentre; . ;est the rigflt paddle's movement, what two things
0 you spot?
Make a new variable for the paddle's centre, and

adjust the if below
If the ball is 35 pixels above or below the centre,

funCthn COmPUterMOVGment () { . then move the paddle - this fixes the shaking motion
var paddl_ezYCentre = paddlezv + (PADDLE_HEIGHT/2); . Use 'canvasContext.fillText' to add some text (under

. he existing draw code)
If (paddlezvcentre < ballY) { . Eeclareta ‘ilayerlScore' and a 'player2Score’

variable, both starting at O

padd lezv += 6 ; . If it gets past player 1, player 2 should score a point

and vice versa

} else if (paddlezvcentre > ballY) { . angI;;:;?g;c:;(:gvith code to display player1Score
paddle2yY -= 6;

A4\ 5
Paddle Al and Scoring

Create a new computerMovement function, called
under moveAll

If paddle2Y is above the ball, move it down a little,
else, move it up

Test the right paddle's movement, what two things
do you spot?

H . Mak iable for the paddle' ,and
function computerMovement () { et the fbelow Jriepmades e an
var paddle2YCentre = paddle2Y + (PADDLE_HEIGHT/ 2); . Ifthe ballis 35 pixels above or below the centre,
. then move the paddle - this fixes the shaking motion
If (paddlezvcentre < ballY = 35) { . Use 'canvasContext.fillText' to add some text (under
the existing draw code)
paddlezv += 6; . Declare a 'player1Score' and a 'player2Score'
. variable, both starting at O

} el_se |f (paddlezvcentre > bau_Y + 35) { . Ifitgets past player 1, player 2 should score a point

and vice versa

padd lezv -_ 6 ; . Replace the text with code to display player1Score

and player2Score

Paddle Al and Scoring

Create a new computerMovement function, called
under moveAll

If paddle2Y is above the ball, move it down a little,
else, move it up

Test the right paddle's movement, what two things
do you spot?

Make a new variable for the paddle's centre, and

adjust the if below
If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion
Use 'canvasContext.fillText' to add some text (under
the existing draw code)

. Declare a 'player1Score' and a 'player2Score'

canvasContext.fillText(“Some Text", 100, 100); variable, both starting at O ,

. If it gets past player 1, player 2 should score a point
and vice versa
Replace the text with code to display player1Score
and player2Score

Paddle Al and Scoring

Create a new computerMovement function, called
under moveAll

If paddle2Y is above the ball, move it down a little,
else, move it up

Test the right paddle's movement, what two things
do you spot?

Make a new variable for the paddle's centre, and
adjust the if below

If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion
Use 'canvasContext.fillText' to add some text (under
the existing draw code)

- . . Declare a 'player1Score' and a 'player2Score'
Var playerisco re o ' variable, both starting at O

- . . If it gets past player 1, player 2 should score a point
var player2Score = 0; It gets past |

Replace the text with code to display player1Score
and player2Score

A4\ 5
Paddle Al and Scoring

Create a new computerMovement function, called
under moveAll

if (ballx >= Canvaslwidth_(ballWidth/z)) { . If paddle2Y is above the ball, move it down a little,
. else, move it up
if (bally > paddle2Y && ballY < paddle2Y+PADDLE_HEIGHT) { . Test the right paddle’s movement, what two things
ballSpeedX = -ballSpeedX; do you spot?
}else | . I\iljakearr:eV\f/ ;a:’iableforthe paddle's centre, and
c adjust the if below
ballReset()’ . If the ball is 35 pixels above or below the centre,
player1sco re-l--l-; then move the paddle - this fixes the shaking motion
. Use 'canvasContext.fillText' to add some text (under
] the existing draw code)

] . Declare a 'player1Score' and a 'player2Score'
variable, both starting at O

If it gets past player 1, player 2 should score a point
and vice versa

if (ballX <= 0 + (ballWidth/2)) {

if (bally > paddle1Y && ballY < paddle1Y+PADDLE_HEIGHT) { . Replace the text with code to display player1Score
ballSpeedX = -ballSpeedX; and player2Score

}else
ballReset();
player2Score++;

}

!

Paddle Al and Scoring

Create a new computerMovement function, called
under moveAll

If paddle2Y is above the ball, move it down a little,
else, move it up

Test the right paddle's movement, what two things
do you spot?

Make a new variable for the paddle's centre, and

adjust the if below

If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion
Use 'canvasContext.fillText' to add some text (under
the existing draw code)

Declare a 'player1Score' and a 'player2Score'

canvasContext.fillText (playeriScore, 100, 100); * Variable, both starting at 0

canvasContext.fillText (player2Score, canvas.width - 100, 100); . Ifit gets past player 1, player 2 should score a point
and vice versa
Replace the text with code to display player1Score
and player2Score

Chapter 3: Polishing Up

Step 1. Ball Control & Winning

N\

v\
Ball Control & Winning

If you leave the game running without input, you can see
the balancing
Now, we need to introduce some ball control, but can
you think why?
In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)
This will be the deviation from the centre of the paddle
We could directly set ballSpeedY from deltaY, but to
prevent extreme speeds, we'll set it to about a third
Adapt and apply the code to work for the other paddle,
be sure to test it!
. Create a constant, WINNING_SCORE

var deltaY = ballY - (paddle1Y+ PADDLE_H ElGHT/Z); . Adjust the ball movement code so the ball is reset after
the scoreis increased, then comment up!
When the ball resets, if one of the players has
exactly/more than the winning score, reset the scores
Test this, then comment out the computerMovement
call to test it on the other side
Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins
At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background
You can also add some "Click to continue" text.
Remember to test - can you see the problem?

v\
Ball Control & Winning

If you leave the game running without input, you can see
the balancing
Now, we need to introduce some ball control, but can
you think why?
In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)
This will be the deviation from the centre of the paddle
We could directly set ballSpeedY from deltaY, but to
prevent extreme speeds, we'll set it to about a third
Adapt and apply the code to work for the other paddle,
be sure to test it!
o . Create a constant, WINNING_SCORE

ba l'_S peedY — deltav o .35 ; . Adjust the ball movement code so the ball is reset after
the scoreis increased, then comment up!
When the ball resets, if one of the players has
exactly/more than the winning score, reset the scores
Test this, then comment out the computerMovement
call to test it on the other side
Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins
At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background
You can also add some "Click to continue" text.
Remember to test - can you see the problem?

v\
Ball Control & Winning

If you leave the game running without input, you can see
the balancing

Now, we need to introduce some ball control, but can
you think why?

In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

This will be the deviation from the centre of the paddle
We could directly set ballSpeedY from deltaY, but to
prevent extreme speeds, we'll set it to about a third
Adapt and apply the code to work for the other paddle,
be sure to test it!

var deltaY = ballY - (paddle2Y+PADDLE_HEIGHT/2); - Createaconstant, WINNING_SCORE =
" i . Adjust the ball movement code so the ball is reset after
bauspeedv = delta¥ 0.35; the scoreis increased, then comment up!

When the ball resets, if one of the players has
exactly/more than the winning score, reset the scores
Test this, then comment out the computerMovement
call to test it on the other side

Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins

At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background

You can also add some "Click to continue" text.
Remember to test - can you see the problem?

const WINNING_SCORE = 3;

If you leave the game running without input, you can see
the balancing

Now, we need to introduce some ball control, but can
you think why?

In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

This will be the deviation from the centre of the paddle
We could directly set ballSpeedY from deltaY, but to
prevent extreme speeds, we'll set it to about a third
Adapt and apply the code to work for the other paddle,
be sure to test it!

Create a constant, WINNING_SCORE

Adjust the ball movement code so the ball is reset after
the scoreis increased, then comment up!

When the ball resets, if one of the players has
exactly/more than the winning score, reset the scores
Test this, then comment out the computerMovement
call to test it on the other side

Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins

At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background

You can also add some "Click to continue" text.
Remember to test - can you see the problem?

v\
Ball Control & Winning

If you leave the game running without input, you can see
the balancing

Now, we need to introduce some ball control, but can
you think why?

In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

This will be the deviation from the centre of the paddle

playerzscore++; We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
ballReset(); . Adapt and apply the code to work for the other paddle,

be sure to test it!

Create a constant, WINNING_SCORE

Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!

When the ball resets, if one of the players has

playe risco renl--l-; . exactly/more than the winning score, reset the scores

Test this, then comment out the computerMovement

ballReset(); | call to test it on the other side

Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins

At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background

You can also add some "Click to continue" text.
Remember to test - can you see the problem?

k‘_/" 57 = N\
Ball Control & Winning

If you leave the game running without input, you can see
the balancing

Now, we need to introduce some ball control, but can
you think why?

function bauReset () { . Inthe ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

|f (playeriscore >= WINNING_SCORE ” . This will be the deviation from the centre of the paddle
- . We could directly set ballSpeedY from deltaY, but to
playerzscore >= WI N N I NG'SCORE) { prevent extreme speeds, we'll set it to about a third
playeriscore O; . Adapt and apply the code to work for the other paddle,
player2Score

. be sure to test it!
O' . Create a constant, WINNING_SCORE
] . Adjust the ball movement code so the ball is reset after
the score is increased, then comment up!

When the ball resets, if one of the players has

bauSpeedX = = bauSpeedX' | exactly/more than the winning score, reset the scores

Test this, then comment out the computerMovement

ballX = CanvaS.Width/Z; . call to test it on the other side
ballY = canvas_heig ht/z’ . Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins

] . At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background
You can also add some "Click to continue" text.
Remember to test - can you see the problem?

// computerMovement ();

If you leave the game running without input, you can see
the balancing

Now, we need to introduce some ball control, but can
you think why?

In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

This will be the deviation from the centre of the paddle
We could directly set ballSpeedY from deltaY, but to
prevent extreme speeds, we'll set it to about a third
Adapt and apply the code to work for the other paddle,
be sure to test it!

Create a constant, WINNING_SCORE

Adjust the ball movement code so the ball is reset after
the score is increased, then comment up!

When the ball resets, if one of the players has
exactly/more than the winning score, reset the scores
Test this, then comment out the computerMovement
call to test it on the other side

Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins

At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background

You can also add some "Click to continue" text.
Remember to test - can you see the problem?

k‘_/" 57 = N\
Ball Control & Winning

If you leave the game running without input, you can see
the balancing

Now, we need to introduce some ball control, but can
you think why?

In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

This will be the deviation from the centre of the paddle

|f (playeriScore >= WINNING_SCORE ” We could directly set ballSpeedY from deltay, bu.t to
playerZSCOI‘e >= WINNING_SCORE) { | prevent extreme speeds, we'll set it to about a third

Adapt and apply the code to work for the other paddle,

playerisco re = O’ be sure to test it!
. Create a constant, WINNING_SCORE
Playerzscore = O, . Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
. When the ball resets, if one of the players has
Showi ngWi nSc reen - true; exactly/more than the winning score, reset the scores
. Test this, then comment out the computerMovement
] call to test it on the other side
Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins
At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background
You can also add some "Click to continue" text.
Remember to test - can you see the problem?

If you leave the game running without input, you can see
the balancing
. Now, we need to introduce some ball control, but can
var showingWinScreen = false; you think why?
. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)
This will be the deviation from the centre of the paddle
We could directly set ballSpeedY from deltaY, but to
prevent extreme speeds, we'll set it to about a third
Adapt and apply the code to work for the other paddle,
be sure to test it!

function moveAll () {

if (showing\X/inScreen) { . Create a constant, WINNING_SCORE
. Adjust the ball movement code so the ball is reset after
return, the score is increased, then comment up!

] . When the ball resets, if one of the players has
exactly/more than the winning score, reset the scores
Test this, then comment out the computerMovement
call to test it on the other side
Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins
At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background
You can also add some "Click to continue" text.
Remember to test - can you see the problem?

function drawAlL () {
drawRect ("black”, 0,0, canvas.width, canvas.height);

if (showingWinScreen) {
return;

If you leave the game running without input, you can see
the balancing

Now, we need to introduce some ball control, but can
you think why?

In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

This will be the deviation from the centre of the paddle
We could directly set ballSpeedY from deltaY, but to
prevent extreme speeds, we'll set it to about a third
Adapt and apply the code to work for the other paddle,
be sure to test it!

Create a constant, WINNING_SCORE

Adjust the ball movement code so the ball is reset after
the score is increased, then comment up!

When the ball resets, if one of the players has
exactly/more than the winning score, reset the scores
Test this, then comment out the computerMovement
call to test it on the other side

Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins

At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background

You can also add some "Click to continue" text.
Remember to test - can you see the problem?

function drawAlLL () {
drawRect ("black”, 0,0, canvas.width, canvas.height);
if (showingWinScreen) {
canvasContext.fillStyle = ‘'white’;
canvasContext.fillText("Click to continue”, 100, 100);
return;

If you leave the game running without input, you can see
the balancing

Now, we need to introduce some ball control, but can
you think why?

In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

This will be the deviation from the centre of the paddle
We could directly set ballSpeedY from deltaY, but to
prevent extreme speeds, we'll set it to about a third
Adapt and apply the code to work for the other paddle,
be sure to test it!

Create a constant, WINNING_SCORE

Adjust the ball movement code so the ball is reset after
the score is increased, then comment up!

When the ball resets, if one of the players has
exactly/more than the winning score, reset the scores
Test this, then comment out the computerMovement
call to test it on the other side

Declare a new boolean variable, showingWinScreen,
and change it to true when someone wins

At the top of moveAll, add an if(showingWinScreen),
and use 'return;' to bail out of excuting the function
Apply the same to the drawAll function, but keep the
black background

You can also add some "Click to continue" text.
Remember to test - can you see the problem?

Chapter 3: Polishing Up

Step 2. Mouse Click, Draw Net

VA4 \
Mouse Click, Draw Net

Above the previous addEventListener, we'll add a new one
listening for 'mousedown’

We'll create a new handleMouseClick function above to set
itup

If the win screen is showing, zero out the scores and turn off
the win screen

Remember to remove the score reset from the ball
movement code

Copy the
if(player1Score>=WINNING_SCORE||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won
We'll now add a drawNet function above drawAll, in which

we're going to use a for loop to draw a net
canvas.addEventListener('mousedown’, handleMouseClick); . Theloop starts at zero, and goes up to canvas.height in

intervals of 40 each time

Inside the loop, we use

colorRect(canvas.width/2-1,i,2,20,white') to draw repeating

rectangles

Call the 'drawNet' function just above where the paddles are

drawn

VA4 \
Mouse Click, Draw Net

Above the previous addEventListener, we'll add a new one
listening for 'mousedown’

We'll create a new handleMouseClick function above to set
itup

If the win screen is showing, zero out the scores and turn off
the win screen

Remember to remove the score reset from the ball
movement code

c . Copy the
funci_:lon han.d"eM?useCI'ICk(th) { if(player1Score>=WINNING_SCORE||player2Score>=WIN
if (showmg\XllnScreen) { NING_SCORE), to create an if in drawAll to display who won
player:.Score = 0 . We:"ll noYv add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net
playerzScore = 0, . Theloop starts at zero, and goes up to canvas.height in
showingWinScreen = false; intervals of 40 each time
. Inside the loop, we use
} colorRect(canvas.width/2-1,i,2,20,white') to draw repeating

} rectangles
Call the 'drawNet' function just above where the paddles are
drawn

function ballReset () {
if (playeriScore >= WINNING_SCORE ||
player2Score >= WINNING_SCORE) {
showingWinScreen = true;

ballSpeedX = -ballSpeedX;
ballX = canvas.width/2;
ballY = canvas.height/2;

V' A 4

Mouse Cliék, Draw Net |

Above the previous addEventListener, we'll add a new one
listening for 'mousedown’

We'll create a new handleMouseClick function above to set
itup

If the win screen is showing, zero out the scores and turn off
the win screen

Remember to remove the score reset from the ball
movement code

Copy the
if(player1Score>=WINNING_SCORE||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won
We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

The loop starts at zero, and goes up to canvas.height in
intervals of 40 each time

Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,white') to draw repeating
rectangles

Call the 'drawNet' function just above where the paddles are
drawn

VA4 \
Mouse Click, Draw Net

Above the previous addEventListener, we'll add a new one
listening for 'mousedown’

We'll create a new handleMouseClick function above to set
itup

If the win screen is showing, zero out the scores and turn off
the win screen

Remember to remove the score reset from the ball
movement code

Copy the
if(player1Score>=WINNING_SCORE]||player2Score>=WIN
If (player1Score >= WINNING_SCORE) { NII}IG?SCORE), to create anif |‘n drawAll to dlspIaY Who.won
Context.fillText("You Won!" 0. 200): . We'llnow add a drawNet function above drawAll, in which
c.:anvas ontext. +1 350, 2 we're going to use a for loop to draw a net
} else |f(player2$core >= W|NN|NG_SCORE) { . Theloop starts at zero, and goes up to canvas.height in
canvasContext.fillText("You Lost.", 350, 200); intervals of 40 each time
} . Inside the loop, we use

colorRect(canvas.width/2-1,i,2,20,white') to draw repeating
rectangles

Call the 'drawNet' function just above where the paddles are
drawn

function drawNet() {
for (vari = 0; i < canvas.height; i += 40) {
drawRect (‘white’, canvas.width/2-1,i, 2,20);

Above the previous addEventListener, we'll add a new one
listening for 'mousedown’

We'll create a new handleMouseClick function above to set
itup

If the win screen is showing, zero out the scores and turn off
the win screen

Remember to remove the score reset from the ball
movement code

Copy the
if(player1Score>=WINNING_SCORE]||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won
We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

The loop starts at zero, and goes up to canvas.height in
intervals of 40 each time

Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,white') to draw repeating

rectangles
Call the 'drawNet' function just above where the paddles are
drawn

VA4 \
Mouse Click, Draw Net

Above the previous addEventListener, we'll add a new one
listening for 'mousedown’
We'll create a new handleMouseClick function above to set
itup
If the win screen is showing, zero out the scores and turn off
the win screen
Remember to remove the score reset from the ball
movement code
Copy the
if(player1Score>=WINNING_SCORE]||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won

. We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

d raWN et() ; . The loop starts at zero, and goes up to canvas.height in

intervals of 40 each time
Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,white') to draw repeating

rectangles
Call the 'drawNet' function just above where the paddles are
drawn

Chapter 3: Polishing Up

Optional: Publish Game

Extract from “Creating a Website"

Using Git

An introduction to Version Control, Git and GitHub

Extract from “Creating a Website"

What is Git?

e Version Control refers to keeping track of changes made to a file or
directory (folder), it can be found in word processors like Word and Google
Docs

e Gitis version control software created in 2005 by Linus Torvalds for the
development of the Linux kernel

e Repositories are central locations in where data is stored and managed.

e GitHub was founded in 2008, built on top of git, it is used to host over 35
million Git repositories on its main site, GitHub.com

e We're going to use GitHub.io, its free web hosting service for our website.

N.B. You can create the site without GitHub.io, we are only using it to host our
site on the internet. Without hosting, no one can access our website!

Extract from “Creating a Website"

First, set up your account

1. Go to GitHub.com

2. Fill in the signup form, if you don't want to use your
personal email, use your school one!

3. You'll probably need to confirm your email address

Extract from “Creating a Website"

Then, create the repository

Click the +~ inthe top right corner
Select “New repository”

Name it
Tick “Initialize this repository with a README”"

Click “Create repository”

a1 = W N =

Extract from “Creating a Website"

Finally, you can set up the website

N o a bk

. Open the dropdown that says “Branch: master”

Type “gh-pages”, then click “Create branch :gh-pages”
Seeing as we are only going to use this branch, we can
make it the default, by going to Settings — Branches
Back in the repository view, click on “Create new file”
Name it “index.html”

Type something, and commit the new file

Go to username.github.io/repositoryname

