
Code your First Game

Timothy Clark
Adapted from code-your-first-game.com

tdhc.uk/pong

Chapter 1: The Basics
Step 1: First Code File

The Internet, The Web and HTML

● The Internet is the global “network of networks” that use Internet protocol
(IP) to link billions of devices worldwide.

● The World Wide Web is an information space where web resources are
identified by URLs, interlinked by hypertext links, and are accessed via the
Internet

● A web site is an online location that maintains one or more web pages.
● A web page is an individual page, either online or offline.
● Hyper Text Markup Language is a translatative language used to create

content in a web page.
● The World Wide Web Consortium (W3C) is an organisation founded by Tim

Berners-Lee, as an international standardisation organisation for the Web.

Extract from “Creating a Website”

<!DOCTYPE html>
<head>

<meta charset="UTF-8" />
<title>My Game!</title>

</head>

First Code File

1. Create the file
2. Declare the DOCTYPE and

Charset
3. Write some HTML (5!)
4. Add the <script> tags
5. Write some JavaScript!
6. Now create the canvas, 800

pixels × 600 pixels

</head>

<body>
Hello World!
<p>This is a paragraph</p>

</body>

First Code File

1. Create the file
2. Declare the DOCTYPE and

Charset
3. Write some HTML (5!)
4. Add the <script> tags
5. Write some JavaScript!
6. Now create the canvas, 800

pixels × 600 pixels

<body>
<script>

console.log(“Hello World!”);

window.alert ("Hello World!");
</script>

</body>

First Code File

1. Create the file
2. Declare the DOCTYPE and

Charset
3. Write some HTML (5!)
4. Add the <script> tags
5. Write some JavaScript!
6. Now create the canvas, 800

pixels × 600 pixels

<canvas
id="gameCanvas"
width="800"
height="600">

</canvas>

<script>

First Code File

1. Create the file
2. Declare the DOCTYPE and

Charset
3. Write some HTML (5!)
4. Add the <script> tags
5. Write some JavaScript!
6. Now create the canvas, 800

pixels × 600 pixels

Chapter 1: The Basics
Step 2: Drawing and Position

<script>
var canvas;
var canvasContext;

</script>

Drawing and Position

1. Declare "canvas" and "canvasContext"
Using "canvas",

2. document.getElementById("canvasID")
3. Get the canvasContext with

"canvas.getContext('2d')"
4. Create the window.onload
5. Try out canvasContext.fillStyle then

.fillRect
6. fillStyle looks for colour values
7. fillRect needs more values (X

Coordinate,Y Coordinate, Width,Height)
8. Draw 3 rectangles

canvas = document.getElementById('gameCanvas');

Drawing and Position

1. Declare "canvas" and "canvasContext"
Using "canvas",

2. document.getElementById("canvasID")
3. Get the canvasContext with

"canvas.getContext('2d')"
4. Create the window.onload
5. Try out canvasContext.fillStyle then

.fillRect
6. fillStyle looks for colour values
7. fillRect needs more values (X

Coordinate,Y Coordinate, Width,Height)
8. Draw 3 rectangles

canvas = document.getElementById('gameCanvas');
canvasContext = canvas.getContext('2d');

Drawing and Position

1. Declare "canvas" and "canvasContext"
Using "canvas",

2. document.getElementById("canvasID")
3. Get the canvasContext with

"canvas.getContext('2d')"
4. Create the window.onload
5. Try out canvasContext.fillStyle then

.fillRect
6. fillStyle looks for colour values
7. fillRect needs more values (X

Coordinate,Y Coordinate, Width,Height)
8. Draw 3 rectangles

canvas = document.getElementById('gameCanvas');
canvasContext = canvas.getContext('2d');

window.onload = function () {

}

Drawing and Position

1. Declare "canvas" and "canvasContext"
Using "canvas",

2. document.getElementById("canvasID")
3. Get the canvasContext with

"canvas.getContext('2d')"
4. Create the window.onload
5. Try out canvasContext.fillStyle then

.fillRect
6. fillStyle looks for colour values
7. fillRect needs more values (X

Coordinate,Y Coordinate, Width,Height)
8. Draw 3 rectangles

window.onload = function () {
canvasContext.fillStyle = ‘white’;
canvasContext.fillRect (100,50, 250,300);

}

Drawing and Position

1. Declare "canvas" and "canvasContext"
Using "canvas",

2. document.getElementById("canvasID")
3. Get the canvasContext with

"canvas.getContext('2d')"
4. Create the window.onload
5. Try out canvasContext.fillStyle then

.fillRect
6. fillStyle looks for colour values
7. fillRect needs more values (X

Coordinate,Y Coordinate, Width,Height)
8. Draw 3 rectangles

Chapter 1: The Basics
Step 3: Movement and Time

window.onload = function () {
canvasContext.fillStyle = ‘white’;
canvasContext.fillRect (100,100, 50,50);

}

Movement and Time

1. Draw the Ball
2. Package all the draw code into a function,

drawAll
3. In window.onload, use setInterval to call

drawAll at millisecond intervals
4. Declare a variable, ballX
5. Log its value each time drawAll is called
6. Increase its value each time drawAll is

called - it now moves!

window.onload = function () {

}

function drawAll () {
canvasContext.fillStyle = ‘white’;
canvasContext.fillRect (100,100, 50,50);

}

Movement and Time

1. Draw the Ball
2. Package all the draw code into a function,

drawAll
3. In window.onload, use setInterval to call

drawAll at millisecond intervals
4. Declare a variable, ballX
5. Log its value each time drawAll is called
6. Increase its value each time drawAll is

called - it now moves!

window.onload = function () {
setInterval(drawAll, 100);

}

Movement and Time

1. Draw the Ball
2. Package all the draw code into a function,

drawAll
3. In window.onload, use setInterval to call

drawAll at millisecond intervals
4. Declare a variable, ballX
5. Log its value each time drawAll is called
6. Increase its value each time drawAll is

called - it now moves!

var ballX = 100;

Movement and Time

1. Draw the Ball
2. Package all the draw code into a function,

drawAll
3. In window.onload, use setInterval to call

drawAll at millisecond intervals
4. Declare a variable, ballX
5. Log its value each time drawAll is called
6. Increase its value each time drawAll is

called - it now moves!

function drawAll () {
canvasContext.fillStyle = ‘#000’;
canvasContext.fillRect (0,0, canvas.width,canvas.height);
canvasContext.fillStyle = ‘white’;
canvasContext.fillRect (100,100, 50,50);

console.log (ballX);
ballX = ballX + 10;

}

Movement and Time

1. Draw the Ball
2. Package all the draw code into a function,

drawAll
3. In window.onload, use setInterval to call

drawAll at millisecond intervals
4. Declare a variable, ballX
5. Log its value each time drawAll is called
6. Increase its value each time drawAll is

called - it now moves!

ballX += 10;

Two ways to increment variables

ballX = ballX + 10;

ballX += 10;

Chapter 1: The Basics
Step 4: Cleaning Up

function drawAll () {
canvasContext.fillStyle = ‘black’;
canvasContext.fillRect (0,0, canvas.width,canvas.height);
canvasContext.fillStyle = ‘white’;
canvasContext.fillRect (0,210, 10,10);
canvasContext.fillStyle = 'red';
canvasContext.fillRect (ballX,100, 10,10);

}

function moveAll () {
console.log (ballX);
ballX += 10;

}

Cleaning Up

1. Move the animation code to a
new, separate function,
moveAll

2. Declare a new variable for
Frames Per Second, to be
used by setInterval

3. Within setInterval, call an
inline function which calls
both moveAll and drawAll

4. Set the interval to 1 second
(1000) divided by the FPS

window.onload = function () {

var FPS = 30;
setInterval(drawAll, 100);

}

Cleaning Up

1. Move the animation code to a
new, separate function,
moveAll

2. Declare a new variable for
Frames Per Second, to be
used by setInterval

3. Within setInterval, call an
inline function which calls
both moveAll and drawAll

4. Set the interval to 1 second
(1000) divided by the FPS

setInterval (function () {
moveAll ();
drawAll ();

} ,100);

Cleaning Up

1. Move the animation code to a
new, separate function,
moveAll

2. Declare a new variable for
Frames Per Second, to be
used by setInterval

3. Within setInterval, call an
inline function which calls
both moveAll and drawAll

4. Set the interval to 1 second
(1000) divided by the FPS

setInterval (function () {
moveAll ();
drawAll ();

} ,1000/FPS);

Cleaning Up

1. Move the animation code to a
new, separate function,
moveAll

2. Declare a new variable for
Frames Per Second, to be
used by setInterval

3. Within setInterval, call an
inline function which calls
both moveAll and drawAll

4. Set the interval to 1 second
(1000) divided by the FPS

Chapter 2: Core Gameplay
Step 1: Bouncing the Ball

<script>
var canvas;
var canvasContext;
var ballSpeedX = 5;

Bouncing the Ball

1. Declare a new variable, ballSpeedX
to be used to move the ball

2. To change the ball direction, make
the value negative

3. If ballX is greater than the canvas
width, reverse its direction

4. Try to do this without hard coding!
5. Now try to apply this logic to the

opposite side of the canvas
6. Create some functions to draw the

rectangles, accepting position,
dimensions and colour

7. Remember to comment up!

<script>
var canvas;
var canvasContext;
var ballSpeedX = -5;

Bouncing the Ball

1. Declare a new variable, ballSpeedX
to be used to move the ball

2. To change the ball direction, make
the value negative

3. If ballX is greater than the canvas
width, reverse its direction

4. Try to do this without hard coding!
5. Now try to apply this logic to the

opposite side of the canvas
6. Create some functions to draw the

rectangles, accepting position,
dimensions and colour

7. Remember to comment up!

if (ballX > 800) {
ballSpeedX = -ballSpeedX;

}

Bouncing the Ball

1. Declare a new variable, ballSpeedX
to be used to move the ball

2. To change the ball direction, make
the value negative

3. If ballX is greater than the canvas
width, reverse its direction

4. Try to do this without hard coding!
5. Now try to apply this logic to the

opposite side of the canvas
6. Create some functions to draw the

rectangles, accepting position,
dimensions and colour

7. Remember to comment up!

if (ballX > canvas.width) {
ballSpeedX = -ballSpeedX;

}

Bouncing the Ball

1. Declare a new variable, ballSpeedX
to be used to move the ball

2. To change the ball direction, make
the value negative

3. If ballX is greater than the canvas
width, reverse its direction

4. Try to do this without hard coding!
5. Now try to apply this logic to the

opposite side of the canvas
6. Create some functions to draw the

rectangles, accepting position,
dimensions and colour

7. Remember to comment up!

if (ballX < 0) {
ballSpeedX = -ballSpeedX;

}

Bouncing the Ball

1. Declare a new variable, ballSpeedX
to be used to move the ball

2. To change the ball direction, make
the value negative

3. If ballX is greater than the canvas
width, reverse its direction

4. Try to do this without hard coding!
5. Now try to apply this logic to the

opposite side of the canvas
6. Create some functions to draw the

rectangles, accepting position,
dimensions and colour

7. Remember to comment up!

function (colour, X, Y, width, height) {
canvasContext.fillStyle = colour;
canvasContext.fillRect (X,Y, width,height);

}

Bouncing the Ball

1. Declare a new variable, ballSpeedX
to be used to move the ball

2. To change the ball direction, make
the value negative

3. If ballX is greater than the canvas
width, reverse its direction

4. Try to do this without hard coding!
5. Now try to apply this logic to the

opposite side of the canvas
6. Create some functions to draw the

rectangles, accepting position,
dimensions and colour

7. Remember to comment up!

// comments are cool!
/*

Multiple
Lines
Are
Too!

*/

Bouncing the Ball

1. Declare a new variable, ballSpeedX
to be used to move the ball

2. To change the ball direction, make
the value negative

3. If ballX is greater than the canvas
width, reverse its direction

4. Try to do this without hard coding!
5. Now try to apply this logic to the

opposite side of the canvas
6. Create some functions to draw the

rectangles, accepting position,
dimensions and colour

7. Remember to comment up!

Chapter 2: Core Gameplay
Step 2: Circle Draw Details

canvasContext.fillStyle = "white";
canvasContext.beginPath();
canvasContext.arc(ballX, 100, ballWidth/2, 0, Math.PI*2, true);
canvasContext.fill();

Circle Draw Details

1. Replace the ball draw code with
a single fillStyle

2. Use canvasContext.beginPath()
to define a shape to fill in

3. Use canvasContext.arc(ballX,
100, 10, 0, Math.PI*2, true)

4. Use canvasContext.fill()
5. Have a play with the .arc to see

what the values represent

Chapter 2: Core Gameplay
Step 3: Ball 2D Motion, Paddle

var ballY = 100;
var ballSpeedY = 5;

Ball 2D Motion, Paddle

1. Create two new variables for the Y speed
and position

2. Under moveAll, set up ballY(You need to do 3
things)

3. Replace the hard coding in the drawAll
function

4. Declare a new variable, paddle1Y for the
position of the left paddle

5. Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
calculateMousePos

6. We'll addEventListener to call the function
when the mouse moves

7. Now update the paddle's draw code
8. Finally, we adjust the mousePos code to

place the cursor in the centre

ballY += ballSpeedY;

if (ballY >= canvas.height) {
 ballSpeedY = -ballSpeedY;
 } else if (ballY <= 0) {
 ballSpeedY = -ballSpeedY;
 };

Ball 2D Motion, Paddle

1. Create two new variables for the Y speed
and position

2. Under moveAll, set up ballY(You need to do 3
things)

3. Replace the hard coding in the drawAll
function

4. Declare a new variable, paddle1Y for the
position of the left paddle

5. Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
calculateMousePos

6. We'll addEventListener to call the function
when the mouse moves

7. Now update the paddle's draw code
8. Finally, we adjust the mousePos code to

place the cursor in the centre

var ballWidth = 50;

const PADDLE_THICKNESS = 10;
const PADDLE_HEIGHT = 100;

var paddle1Y = 250;

Ball 2D Motion, Paddle

1. Create two new variables for the Y speed
and position

2. Under moveAll, set up ballY(You need to do 3
things)

3. Replace the hard coding in the drawAll
function

4. Declare a new variable, paddle1Y for the
position of the left paddle

5. Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
calculateMousePos

6. We'll addEventListener to call the function
when the mouse moves

7. Now update the paddle's draw code
8. Finally, we adjust the mousePos code to

place the cursor in the centre

function calculateMousePos(evt) {
 var rect = canvas.getBoundingClientRect();
 var root = document.documentElement;
 var mouseX = evt.clientX - rect.left - root.scrollLeft;
 var mouseY = evt.clientY - rect.top - root.scrollTop;
 return {
 x: mouseX,
 y:mouseY
 }
 }

...

canvas.addEventListener('mousemove', function (evt) {
var mousePos = calculateMousePos(evt);
paddle1Y = mousePos.y;

});

Ball 2D Motion, Paddle

1. Create two new variables for the Y speed
and position

2. Under moveAll, set up ballY(You need to do 3
things)

3. Replace the hard coding in the drawAll
function

4. Declare a new variable, paddle1Y for the
position of the left paddle

5. Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
calculateMousePos

6. We'll addEventListener to call the function
when the mouse moves

7. Now update the paddle's draw code
8. Finally, we adjust the mousePos code to

place the cursor in the centre

colorRect (
“white”,
0,
paddle1Y,
PADDLE_THICKNESS,
PADDLE_HEIGHT);

Ball 2D Motion, Paddle

1. Create two new variables for the Y speed
and position

2. Under moveAll, set up ballY(You need to do 3
things)

3. Replace the hard coding in the drawAll
function

4. Declare a new variable, paddle1Y for the
position of the left paddle

5. Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
calculateMousePos

6. We'll addEventListener to call the function
when the mouse moves

7. Now update the paddle's draw code
8. Finally, we adjust the mousePos code to

place the cursor in the centre

canvas.addEventListener('mousemove', function (evt) {
var mousePos = calculateMousePos(evt);
paddle1Y = mousePos.y - (PADDLE_HEIGHT/2);

});

Ball 2D Motion, Paddle

1. Create two new variables for the Y speed
and position

2. Under moveAll, set up ballY(You need to do 3
things)

3. Replace the hard coding in the drawAll
function

4. Declare a new variable, paddle1Y for the
position of the left paddle

5. Declare a new constant, PADDLE_HEIGHT
Underneath, we'll set up a new function,
calculateMousePos

6. We'll addEventListener to call the function
when the mouse moves

7. Now update the paddle's draw code
8. Finally, we adjust the mousePos code to

place the cursor in the centre

Chapter 2: Core Gameplay
Step 4: Ball Reset and Collision

function ballReset () {
ballX = canvas.width/2;
ballY = canvas.height/2;

}

Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre

2. Under moveAll, comment out the code that
flips the ball if it goes below 0

3. Call ballReset there
4. Move the commented out line into the

ballReset function
5. Under moveAll, we need to add an if to deflect

the ball if it hits the paddle, else ballReset
6. Test your code! Remember to check the edges
7. Now create the variables for a second paddle
8. In the draw code, duplicate the first paddle's

code, and adjust for new variables and the
paddle 2 position

9. Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

10. Back at the addEventListener, change it to
paddle2Y for testing

11. Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

function ballReset () {
ballX = canvas.width/2;
ballY = canvas.height/2;

ballSpeedX = -ballSpeedX;
}

ballReset();

Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre

2. Under moveAll, comment out the code that
flips the ball if it goes below 0

3. Call ballReset there
4. Move the commented out line into the

ballReset function
5. Under moveAll, we need to add an if to deflect

the ball if it hits the paddle, else ballReset
6. Test your code! Remember to check the edges
7. Now create the variables for a second paddle
8. In the draw code, duplicate the first paddle's

code, and adjust for new variables and the
paddle 2 position

9. Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

10. Back at the addEventListener, change it to
paddle2Y for testing

11. Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

if (ballY < 0) {
 ballSpeedY = -ballSpeedY;
}

if (ballX < 0) {
if (ballY > paddle1Y &&

 ballY < paddle1Y+PADDLE_HEIGHT) {
 ballSpeedX = -ballSpeedX;

} else {
 ballReset();

}
}

Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre

2. Under moveAll, comment out the code that
flips the ball if it goes below 0

3. Call ballReset there
4. Move the commented out line into the

ballReset function
5. Under moveAll, we need to add an if to deflect

the ball if it hits the paddle, else ballReset
6. Test your code! Remember to check the edges
7. Now create the variables for a second paddle
8. In the draw code, duplicate the first paddle's

code, and adjust for new variables and the
paddle 2 position

9. Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

10. Back at the addEventListener, change it to
paddle2Y for testing

11. Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

var paddle2Y = 250;

Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre

2. Under moveAll, comment out the code that
flips the ball if it goes below 0

3. Call ballReset there
4. Move the commented out line into the

ballReset function
5. Under moveAll, we need to add an if to deflect

the ball if it hits the paddle, else ballReset
6. Test your code! Remember to check the edges
7. Now create the variables for a second paddle
8. In the draw code, duplicate the first paddle's

code, and adjust for new variables and the
paddle 2 position

9. Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

10. Back at the addEventListener, change it to
paddle2Y for testing

11. Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

const PADDLE_THICKNESS = 10;

drawRect ("white",
canvas.width-PADDLE_THICKNESS,paddle2Y,
PADDLE_THICKNESS, PADDLE_HEIGHT);

Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre

2. Under moveAll, comment out the code that
flips the ball if it goes below 0

3. Call ballReset there
4. Move the commented out line into the

ballReset function
5. Under moveAll, we need to add an if to deflect

the ball if it hits the paddle, else ballReset
6. Test your code! Remember to check the edges
7. Now create the variables for a second paddle
8. In the draw code, duplicate the first paddle's

code, and adjust for new variables and the
paddle 2 position

9. Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

10. Back at the addEventListener, change it to
paddle2Y for testing

11. Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

canvas.addEventListener('mousemove', function (evt) {
var mousePos = calculateMousePos(evt);
paddle2Y = mousePos.y - (PADDLE_HEIGHT/2);

});

Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre

2. Under moveAll, comment out the code that
flips the ball if it goes below 0

3. Call ballReset there
4. Move the commented out line into the

ballReset function
5. Under moveAll, we need to add an if to deflect

the ball if it hits the paddle, else ballReset
6. Test your code! Remember to check the edges
7. Now create the variables for a second paddle
8. In the draw code, duplicate the first paddle's

code, and adjust for new variables and the
paddle 2 position

9. Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

10. Back at the addEventListener, change it to
paddle2Y for testing

11. Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

if (ballX > canvas.width) {
if (ballY > paddle2Y &&

 ballY < paddle2Y+PADDLE_HEIGHT) {
 ballSpeedX = -ballSpeedX;

} else {
 ballReset();

}
}

Ball Reset and Collision

1. Create a ballReset function, to place the ball in
the centre

2. Under moveAll, comment out the code that
flips the ball if it goes below 0

3. Call ballReset there
4. Move the commented out line into the

ballReset function
5. Under moveAll, we need to add an if to deflect

the ball if it hits the paddle, else ballReset
6. Test your code! Remember to check the edges
7. Now create the variables for a second paddle
8. In the draw code, duplicate the first paddle's

code, and adjust for new variables and the
paddle 2 position

9. Try to avoid hard coding, you'll need a new
constant, PADDLE_THICKNESS!

10. Back at the addEventListener, change it to
paddle2Y for testing

11. Under moveAll, copy the if(ballX < 0), and
alter it to create if(ballX > canvas.width) for
paddle 2

Chapter 2: Core Gameplay
Step 5: Paddle AI and Scoring

computerMovement ();

function computerMovement () {
if (paddle2Y < ballY) {

paddle2Y += 6;
} else if (paddle2YCentre > ballY) {

paddle2Y -= 6;
}

}

Paddle AI and Scoring

1. Create a new computerMovement function, called
under moveAll

2. If paddle2Y is above the ball, move it down a little,
else, move it up

3. Test the right paddle's movement, what two things
do you spot?

4. Make a new variable for the paddle's centre, and
adjust the if below

5. If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion

6. Use 'canvasContext.fillText' to add some text (under
the existing draw code)

7. Declare a 'player1Score' and a 'player2Score'
variable, both starting at 0

8. If it gets past player 1, player 2 should score a point
and vice versa

9. Replace the text with code to display player1Score
and player2Score

var paddle2YCentre;

function computerMovement () {
var paddle2YCentre = paddle2Y + (PADDLE_HEIGHT/2);

if (paddle2YCentre < ballY) {
paddle2Y += 6;

} else if (paddle2YCentre > ballY) {
paddle2Y -= 6;

}
}

Paddle AI and Scoring

1. Create a new computerMovement function, called
under moveAll

2. If paddle2Y is above the ball, move it down a little,
else, move it up

3. Test the right paddle's movement, what two things
do you spot?

4. Make a new variable for the paddle's centre, and
adjust the if below

5. If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion

6. Use 'canvasContext.fillText' to add some text (under
the existing draw code)

7. Declare a 'player1Score' and a 'player2Score'
variable, both starting at 0

8. If it gets past player 1, player 2 should score a point
and vice versa

9. Replace the text with code to display player1Score
and player2Score

function computerMovement () {
var paddle2YCentre = paddle2Y + (PADDLE_HEIGHT/2);

if (paddle2YCentre < ballY - 35) {
paddle2Y += 6;

} else if (paddle2YCentre > ballY + 35) {
paddle2Y -= 6;

}
}

Paddle AI and Scoring

1. Create a new computerMovement function, called
under moveAll

2. If paddle2Y is above the ball, move it down a little,
else, move it up

3. Test the right paddle's movement, what two things
do you spot?

4. Make a new variable for the paddle's centre, and
adjust the if below

5. If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion

6. Use 'canvasContext.fillText' to add some text (under
the existing draw code)

7. Declare a 'player1Score' and a 'player2Score'
variable, both starting at 0

8. If it gets past player 1, player 2 should score a point
and vice versa

9. Replace the text with code to display player1Score
and player2Score

canvasContext.fillText(“Some Text”, 100, 100);

Paddle AI and Scoring

1. Create a new computerMovement function, called
under moveAll

2. If paddle2Y is above the ball, move it down a little,
else, move it up

3. Test the right paddle's movement, what two things
do you spot?

4. Make a new variable for the paddle's centre, and
adjust the if below

5. If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion

6. Use 'canvasContext.fillText' to add some text (under
the existing draw code)

7. Declare a 'player1Score' and a 'player2Score'
variable, both starting at 0

8. If it gets past player 1, player 2 should score a point
and vice versa

9. Replace the text with code to display player1Score
and player2Score

var player1Score = 0;
var player2Score = 0;

Paddle AI and Scoring

1. Create a new computerMovement function, called
under moveAll

2. If paddle2Y is above the ball, move it down a little,
else, move it up

3. Test the right paddle's movement, what two things
do you spot?

4. Make a new variable for the paddle's centre, and
adjust the if below

5. If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion

6. Use 'canvasContext.fillText' to add some text (under
the existing draw code)

7. Declare a 'player1Score' and a 'player2Score'
variable, both starting at 0

8. If it gets past player 1, player 2 should score a point
and vice versa

9. Replace the text with code to display player1Score
and player2Score

if (ballX >= canvas.width-(ballWidth/2)) {
 if (ballY > paddle2Y && ballY < paddle2Y+PADDLE_HEIGHT) {
 ballSpeedX = -ballSpeedX;
 } else {
 ballReset();

 player1Score++;
 }
 }

 if (ballX <= 0 + (ballWidth/2)) {
 if (ballY > paddle1Y && ballY < paddle1Y+PADDLE_HEIGHT) {
 ballSpeedX = -ballSpeedX;
 } else {
 ballReset();

 player2Score++;
 }
 }

Paddle AI and Scoring

1. Create a new computerMovement function, called
under moveAll

2. If paddle2Y is above the ball, move it down a little,
else, move it up

3. Test the right paddle's movement, what two things
do you spot?

4. Make a new variable for the paddle's centre, and
adjust the if below

5. If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion

6. Use 'canvasContext.fillText' to add some text (under
the existing draw code)

7. Declare a 'player1Score' and a 'player2Score'
variable, both starting at 0

8. If it gets past player 1, player 2 should score a point
and vice versa

9. Replace the text with code to display player1Score
and player2Score

canvasContext.fillText (player1Score, 100, 100);
canvasContext.fillText (player2Score, canvas.width - 100, 100);

Paddle AI and Scoring

1. Create a new computerMovement function, called
under moveAll

2. If paddle2Y is above the ball, move it down a little,
else, move it up

3. Test the right paddle's movement, what two things
do you spot?

4. Make a new variable for the paddle's centre, and
adjust the if below

5. If the ball is 35 pixels above or below the centre,
then move the paddle - this fixes the shaking motion

6. Use 'canvasContext.fillText' to add some text (under
the existing draw code)

7. Declare a 'player1Score' and a 'player2Score'
variable, both starting at 0

8. If it gets past player 1, player 2 should score a point
and vice versa

9. Replace the text with code to display player1Score
and player2Score

Chapter 3: Polishing Up
Step 1: Ball Control & Winning

var deltaY = ballY - (paddle1Y+PADDLE_HEIGHT/2);

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

ballSpeedY = deltaY * 0.35;

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

var deltaY = ballY - (paddle2Y+PADDLE_HEIGHT/2);
ballSpeedY = deltaY * 0.35;

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

const WINNING_SCORE = 3;

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

player2Score++;
ballReset();

player1Score++;
ballReset();

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

function ballReset () {
 if (player1Score >= WINNING_SCORE ||
 player2Score >= WINNING_SCORE) {
 player1Score = 0;
 player2Score = 0;
 }

 ballSpeedX = -ballSpeedX;
 ballX = canvas.width/2;
 ballY = canvas.height/2;
}

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

// computerMovement ();

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

if (player1Score >= WINNING_SCORE ||
 player2Score >= WINNING_SCORE) {

player1Score = 0;
player2Score = 0;

showingWinScreen = true;
}

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

var showingWinScreen = false;

function moveAll () {
if (showingWinScreen) {

return;
}

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

function drawAll () {
drawRect ("black", 0,0, canvas.width, canvas.height);

if (showingWinScreen) {
return;

}

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

function drawAll () {
drawRect ("black", 0,0, canvas.width, canvas.height);
if (showingWinScreen) {

canvasContext.fillStyle = 'white';
canvasContext.fillText("Click to continue", 100, 100);
return;

}

Ball Control & Winning

1. If you leave the game running without input, you can see
the balancing

2. Now, we need to introduce some ball control, but can
you think why?

3. In the ball movement code, we'll declare a variable,
deltaY=ballY-(paddle1Y+PADDLE_HEIGHT/2)

4. This will be the deviation from the centre of the paddle
5. We could directly set ballSpeedY from deltaY, but to

prevent extreme speeds, we'll set it to about a third
6. Adapt and apply the code to work for the other paddle,

be sure to test it!
7. Create a constant, WINNING_SCORE
8. Adjust the ball movement code so the ball is reset after

the score is increased, then comment up!
9. When the ball resets, if one of the players has

exactly/more than the winning score, reset the scores
10. Test this, then comment out the computerMovement

call to test it on the other side
11. Declare a new boolean variable, showingWinScreen,

and change it to true when someone wins
12. At the top of moveAll, add an if(showingWinScreen),

and use 'return;' to bail out of excuting the function
13. Apply the same to the drawAll function, but keep the

black background
14. You can also add some "Click to continue" text.

Remember to test - can you see the problem?

Chapter 3: Polishing Up
Step 2: Mouse Click, Draw Net

canvas.addEventListener('mousedown', handleMouseClick);

Mouse Click, Draw Net

1. Above the previous addEventListener, we'll add a new one
listening for 'mousedown'

2. We'll create a new handleMouseClick function above to set
it up

3. If the win screen is showing, zero out the scores and turn off
the win screen

4. Remember to remove the score reset from the ball
movement code

5. Copy the
if(player1Score>=WINNING_SCORE||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won

6. We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

7. The loop starts at zero, and goes up to canvas.height in
intervals of 40 each time

8. Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,'white') to draw repeating
rectangles

9. Call the 'drawNet' function just above where the paddles are
drawn

function handleMouseClick(evt) {
if (showingWinScreen) {

 player1Score = 0;
 player2Score = 0;
 showingWinScreen = false;

}
}

Mouse Click, Draw Net

1. Above the previous addEventListener, we'll add a new one
listening for 'mousedown'

2. We'll create a new handleMouseClick function above to set
it up

3. If the win screen is showing, zero out the scores and turn off
the win screen

4. Remember to remove the score reset from the ball
movement code

5. Copy the
if(player1Score>=WINNING_SCORE||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won

6. We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

7. The loop starts at zero, and goes up to canvas.height in
intervals of 40 each time

8. Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,'white') to draw repeating
rectangles

9. Call the 'drawNet' function just above where the paddles are
drawn

function ballReset () {
if (player1Score >= WINNING_SCORE ||

 player2Score >= WINNING_SCORE) {
 showingWinScreen = true;

}

 ballSpeedX = -ballSpeedX;
 ballX = canvas.width/2;
 ballY = canvas.height/2;
}

Mouse Click, Draw Net

1. Above the previous addEventListener, we'll add a new one
listening for 'mousedown'

2. We'll create a new handleMouseClick function above to set
it up

3. If the win screen is showing, zero out the scores and turn off
the win screen

4. Remember to remove the score reset from the ball
movement code

5. Copy the
if(player1Score>=WINNING_SCORE||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won

6. We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

7. The loop starts at zero, and goes up to canvas.height in
intervals of 40 each time

8. Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,'white') to draw repeating
rectangles

9. Call the 'drawNet' function just above where the paddles are
drawn

if (player1Score >= WINNING_SCORE) {
canvasContext.fillText("You Won!", 350, 200);

} else if(player2Score >= WINNING_SCORE) {
canvasContext.fillText("You Lost.", 350, 200);

}

Mouse Click, Draw Net

1. Above the previous addEventListener, we'll add a new one
listening for 'mousedown'

2. We'll create a new handleMouseClick function above to set
it up

3. If the win screen is showing, zero out the scores and turn off
the win screen

4. Remember to remove the score reset from the ball
movement code

5. Copy the
if(player1Score>=WINNING_SCORE||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won

6. We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

7. The loop starts at zero, and goes up to canvas.height in
intervals of 40 each time

8. Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,'white') to draw repeating
rectangles

9. Call the 'drawNet' function just above where the paddles are
drawn

function drawNet() {
for (var i = 0; i < canvas.height; i += 40) {
 drawRect ('white', canvas.width/2-1,i, 2,20);
}

}

Mouse Click, Draw Net

1. Above the previous addEventListener, we'll add a new one
listening for 'mousedown'

2. We'll create a new handleMouseClick function above to set
it up

3. If the win screen is showing, zero out the scores and turn off
the win screen

4. Remember to remove the score reset from the ball
movement code

5. Copy the
if(player1Score>=WINNING_SCORE||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won

6. We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

7. The loop starts at zero, and goes up to canvas.height in
intervals of 40 each time

8. Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,'white') to draw repeating
rectangles

9. Call the 'drawNet' function just above where the paddles are
drawn

drawNet();

Mouse Click, Draw Net

1. Above the previous addEventListener, we'll add a new one
listening for 'mousedown'

2. We'll create a new handleMouseClick function above to set
it up

3. If the win screen is showing, zero out the scores and turn off
the win screen

4. Remember to remove the score reset from the ball
movement code

5. Copy the
if(player1Score>=WINNING_SCORE||player2Score>=WIN
NING_SCORE), to create an if in drawAll to display who won

6. We'll now add a drawNet function above drawAll, in which
we're going to use a for loop to draw a net

7. The loop starts at zero, and goes up to canvas.height in
intervals of 40 each time

8. Inside the loop, we use
colorRect(canvas.width/2-1,i,2,20,'white') to draw repeating
rectangles

9. Call the 'drawNet' function just above where the paddles are
drawn

Chapter 3: Polishing Up
Optional: Publish Game

Using Git
An introduction to Version Control, Git and GitHub

Extract from “Creating a Website”

What is Git?

● Version Control refers to keeping track of changes made to a file or
directory (folder), it can be found in word processors like Word and Google
Docs

● Git is version control software created in 2005 by Linus Torvalds for the
development of the Linux kernel

● Repositories are central locations in where data is stored and managed.
● GitHub was founded in 2008, built on top of git, it is used to host over 35

million Git repositories on its main site, GitHub.com
● We’re going to use GitHub.io, its free web hosting service for our website.

N.B. You can create the site without GitHub.io, we are only using it to host our
site on the internet. Without hosting, no one can access our website!

Extract from “Creating a Website”

First, set up your account

1. Go to GitHub.com
2. Fill in the signup form, if you don’t want to use your

personal email, use your school one!
3. You’ll probably need to confirm your email address

Extract from “Creating a Website”

Then, create the repository

1. Click the in the top right corner
2. Select “New repository”
3. Name it
4. Tick “Initialize this repository with a README”
5. Click “Create repository”

Extract from “Creating a Website”

Finally, you can set up the website

1. Open the dropdown that says “Branch: master”
2. Type “gh-pages”, then click “Create branch :gh-pages”
3. Seeing as we are only going to use this branch, we can

make it the default, by going to Settings → Branches
4. Back in the repository view, click on “Create new file”
5. Name it “index.html”
6. Type something, and commit the new file
7. Go to username.github.io/repositoryname

Extract from “Creating a Website”

